TriCCS 撮像モードを用いた Low-Luminosity γ 線パーストの可視光対応天体の探査計画

田口健太 (京都大学岡山天文台) on behalf of a larger collaboration

Abstract

Low-Luminosity GRB (LLGRB) は通常の γ 線バースト (GRB) より約 4 桁低い光度を持つ種族である。LLGRB は通常の GRB より発生頻度が多いはずだが、 暗さのために観測例が極めて少ない。しかし、2024 年に打ち上げられた高感度 X 線望遠鏡 Einstein Probe (EP) によりこの現状が改善され、年間複数個の LLGRB が発見されると考えられる。そこで我々は TriCCS 撮像モードを用いて EP 発見の突発天体を追観測している。

1. Low-luminosity γ線パースト (LLGRB) とは?

 γ 線バースト (GRB) は宇宙におけるもっともエネルギーの大きな恒星の爆発現象である。 GRB では短時間 (< 100 – 1000 秒) に、 10^{50} – 10^{52} erg s $^{-1}$ (放射が等方的だと仮定した場合) もの高光度の γ 線が放射される。GRB のうち継続時間が長い (> 2 秒) ものは long-GRB と呼ばれている。Long-GRB は重い星の超新星爆発と関係していることが知られており、その高光度の γ 線放射は相対論的 jet によると考えられている。

GRB の中でも、典型的なものより 4 桁ほど γ 線光度が低いものが存在し、これらを low-luminosity GRB (LLGRB、図1) と呼ぶ。 **この低い光度のために、詳細な観測が行われた LLGRB は過去に 10 数例ほどしか存在しない**。しかし、LLGRB の観測数が少ない理由は、その暗さによる観測バイアスに過ぎず、宇宙における実際の発生率は通常の GRB よりも 100 倍以上高い、100 − 1000 Gpc⁻³ yr⁻¹ と推定されている [1]。つまり **LLGRB は通常の GRB よりも遥かに普遍的な現象である**。このことからも、LLGRB は通常の超新星爆発と、GRB との間を接続する重要な天体現象であると言える。

2. 2023 年以前の LLGRB の観測

LLGRB に対応する超新星の観測はあまり進展していない。2023 年までの過去 25 年間で、LLGRB と対応する超新星の観測が行われた明確な天体は 5 例しか無い (GRB 080425 = SN 1998bw、GRB 031203 = SN 2003lw、GRB 060218 = SN 2006aj、GRB 100316D = SN 2010bh、GRB 171205A = SN 2017iuk)。Swift/BAT の検出限界は 10⁻⁹ – 10⁻⁸ erg s⁻¹ cm⁻² であり、LLGRB では 150 Mpc の距離に対応する。この限界距離では、期待される LLGRB の観測数は極めて少なかった (図1)。

このため、(1) LLGRB の母天体、(2) LLGRB はどのように爆発して γ 線を放射するのか?、(3) LLGRB は高エネルギーニュートリノの起源となるか?、など LLGRB に関する根本的な問いに対しても結論が得られていないのが現状である。しかし、**この現状は 2024 年 1 月に打ちあがった Einstein Probe の登場により劇的に改善されることが期待される**。

3. Einstein Probe (EP) の登場

2024 年 1 月、Einstein Probe (以下 EP) が打ちあがった。EP は広視野の X 線望遠鏡 (WXT、分解能 ~ 3 arcmin) と追跡観測用の X 線望遠鏡 (FXT、分解能 ~ 20 arcsec) を持つ。特に WXT は高視野 (3600 deg²) かつ、軟 X 線 (0.5 – 4 keV) 帯域への高い感度を有する。2024 年 8 月末時点で 27 個の X 線突発天体が EP チームにより報告され、典型的な flux は 10^{-10} – 10^{-9} erg s⁻¹ cm⁻² と、感度が Swift よりも 10 倍あることが確認されている。

EP の高感度によって、 $L = 10^{46}$ erg s⁻¹ の LLGRB であっても、500 Mpc まで検出可能と考えられる (図1)。控えめに 100 Gpc⁻³ yr⁻¹ と言う event rate を仮定しても、EP による LLGRB の発見率は 6 yr⁻¹ 程度が期待され、うち半数が北半球から観測可能と考えられる。すなわち、**EP の登場によって、超新星に付随する LLGRB を年間に複数個観測可能になる** 時代がもたらされたと言える。また LLGRB の放射は GRB より soft であることが知られて おり [2]、soft X 線に強い感度を持つ EP との相性も優れている。

実際 EP 240414a = SN 2024gsa および EP 250108a = SN 2025kg の 2 天体は、対応する 超新星まで発見されており、GRB や LLGRB と超新星との関係性が議論されている [3, 4]。

4. 我々の LLGRB 探査計画

我々は Seimei/TriCCS による撮像観測と Gemini/GMOS による分光観測とを組み合わせた ToO 観測を計画している (図2)。

(1) Seimei/TriCCS を用いた LLGRB の可視光対応天体の特定

EP のアラートを受けて TriCCS 撮像モード (g2/r2/i2) を用いて追観測を行う。EP による位置決定の誤差領域全体を、TriCCS の 1 視野でカバーできる。なお LLGRB は比較的近傍 (d < 500 Mpc) の銀河に付随していると予想される。この距離 (μ < 38.5 mag) では最も暗い銀河 (– 15.5 AB mag) も PS1 の限界等級 (23 AB mag) より明るいと考えられる。EP によるアラートの大部分は LLGRB では無い GRB だと考えられるが、EP/FXT の誤差領域内にPS1 の近傍銀河が存在するイベントは、LLGRB の可能性が最も高いと考えられるので、ToO を特に積極的に発動する。

現時点で我々は 10 数個の EP 天体を追観測しており、このうち EP250404a は<mark>即時観測 (EP の報告 24 分後) に成功</mark>した。本天体は通常の GRB であったが、残光を検出した [5]。また、直近では EP250828a の <u>i = 22.3 の対応天体を世界に先駆けて報告</u>している [6]。

(2) Gemini/GMOS を用いた分光観測

TriCCS により LLGRB の可視光対応天体が発見された際は、Gemini/GMOS での ToO を 発動して超新星のスペクトルを取得し、LLGRB までの距離を決定する。特に、21 等までの 天体ならば、Ic 型超新星の中でのサブタイプの区別や、爆発の膨張速度を決定が可能となる。

参考文献

- [1] Liang et al. (2007), ApJ, 662, 1111, [2] Pian et al. (2006), Nature, 442, 1011,
- [3] van Dalen et al. (2025), ApJL, 982, 47, [4] Srinivasaragavan et al. (2025), ApJL, 988, 60,
- [5] Taguchi, Maeda, Tanaka (2025), GCN Circular #40074,
- [6] Taguchi, Tanaka, Toshikage (2025), GCN Circular #41582,
- [7] Lien et al. (2016), ApJ, 829, 7, [8] Campana et al. (2006), Nature, 442, 1008,
- [9] D'Elia et al. (2018), A&A, 619, 66.

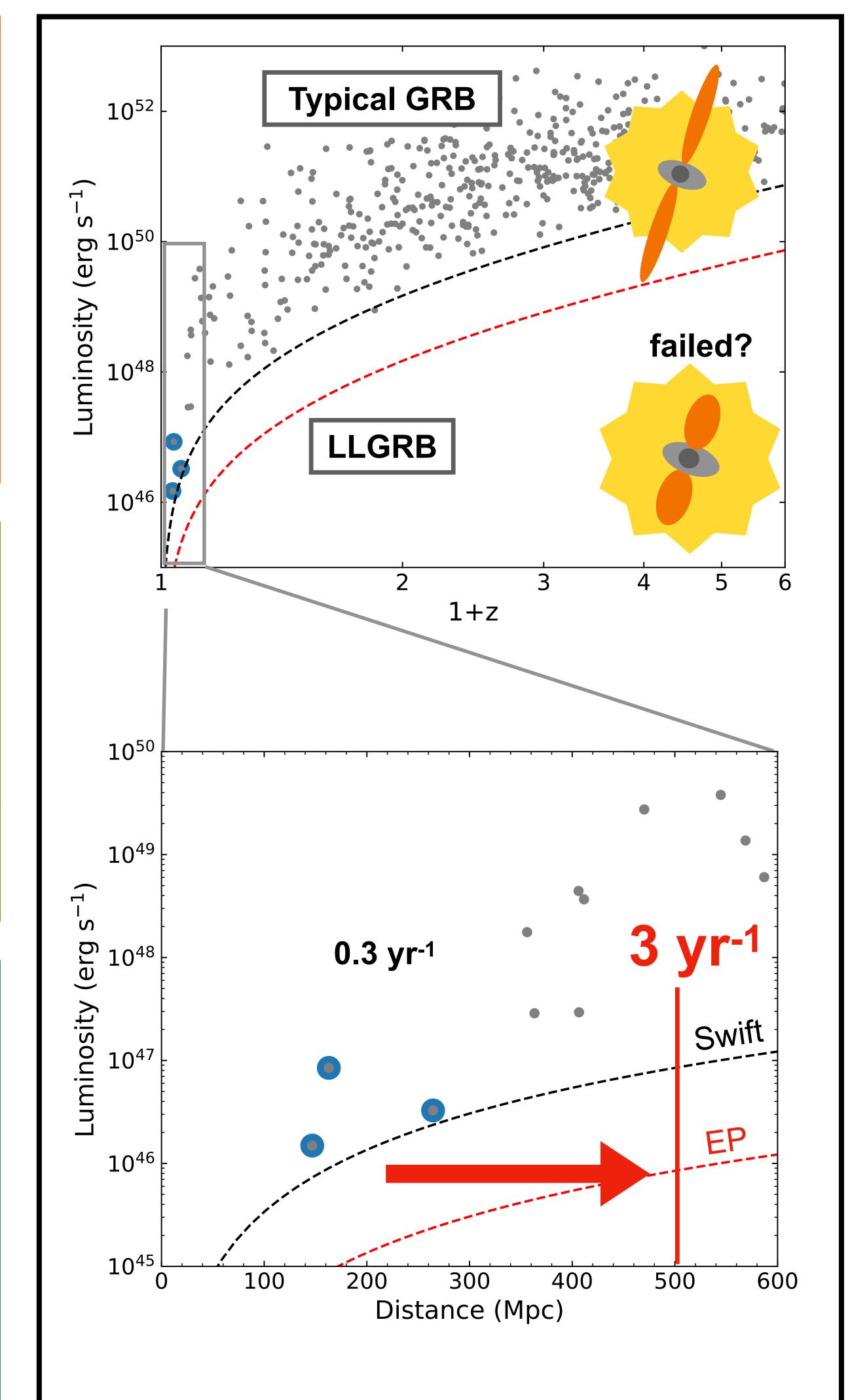


図1: (上) Swift 発見の GRB のうち、赤方偏移が既知の もの [7]。青で示す 3 天体は < 10⁴⁷ erg s⁻¹ と特に暗く、 これらが LLGRB である。(下) EP の登場により、観測 可能な LLGRB が Swift より1 桁増加すると期待される。

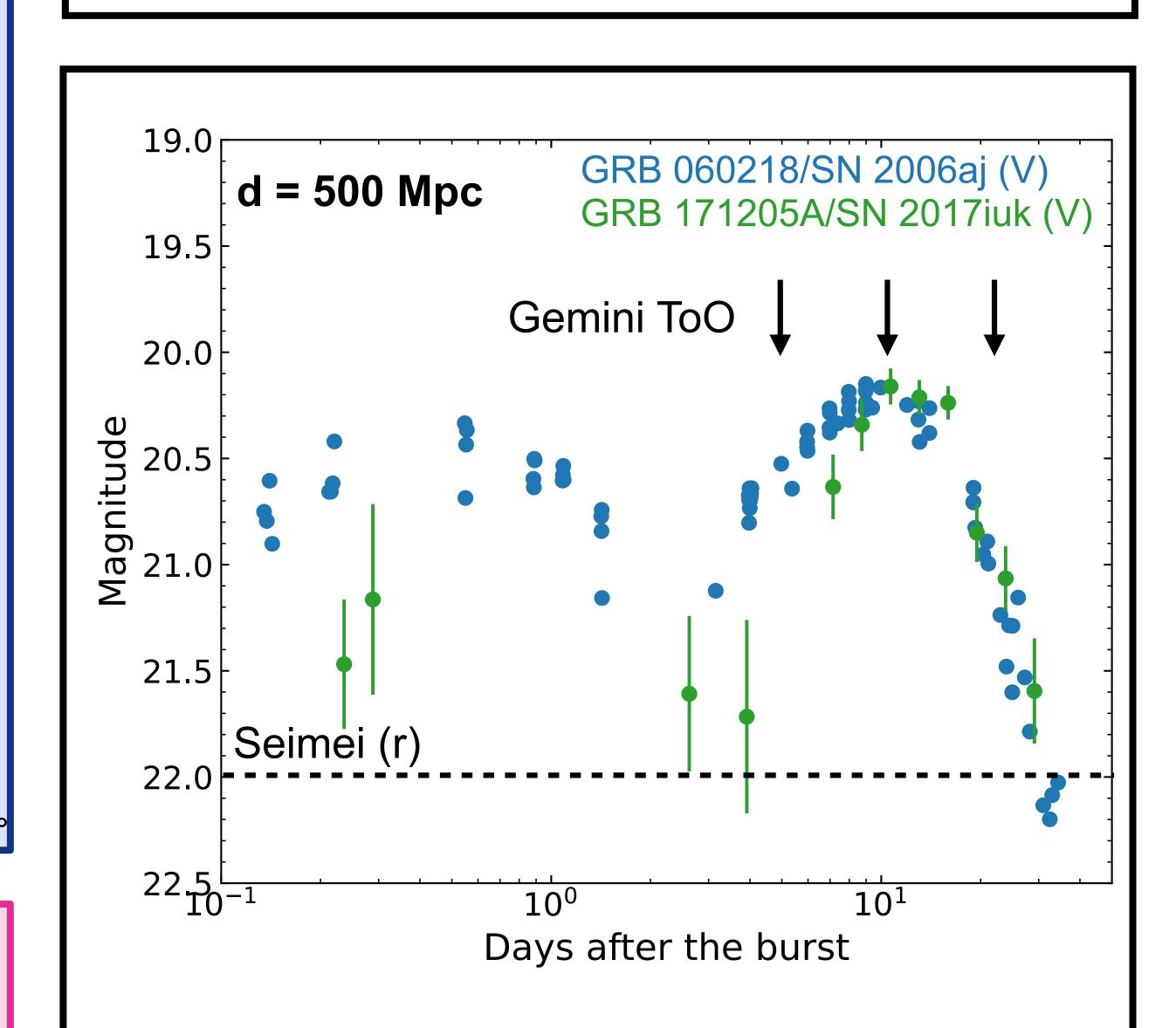


図2: 500 Mpc にある LLGRB から期待される光度曲線の想像図 (SN 2006aj [8]、SN 2017iuk [9] との比較)。特に1日以内に終了する GRB 残光と、2 週間程度後に出現する超新星との撮像を我々は狙う。

Plan for Exploring Optical Counterparts of Lowluminosity γ-ray Bursts Using TriCCS Imaging Mode

Kenta Taguchi (Okayama Observatory, Kyoto University) on behalf of a larger collaboration

Abstract

Low-Luminosity GRBs (LLGRBs) are a class of γ -ray bursts (GRBs) with luminosities approximately four orders of magnitude lower than typical γ -ray bursts. LLGRBs should occur more frequently than typical GRBs, but their extreme faintness results in very few observational examples. However, the high-sensitivity X-ray telescope Einstein Probe (EP), launched in 2024, is expected to improve this situation, leading to the discovery of several LLGRBs per year. Therefore, we are conducting follow-up observations of transient objects detected by EP using the TriCCS imaging mode.

1. What are Low-luminosity γ -ray Bursts (LLGRB)?

 γ -ray bursts (GRBs) are the most energetic stellar explosions in the universe. During a GRB, extremely high-luminosity gamma rays are emitted over a short duration (< 100 – 1000 s), reaching energies of 10^{50} – 10^{52} erg s⁻¹ (assuming isotropic radiation). GRBs with longer durations (> 2 s) are called long-GRBs. Long-GRBs are known to be associated with supernova explosions of massive stars, and their high-luminosity γ -ray emission is thought to originate from relativistic jets.

Among GRBs, some show γ -ray luminosities ~ 4 orders of magnitude lower than typical GRBs; these are called low-luminosity GRBs (LLGRBs, Fig. 1). **Due to this low luminosity, only about a dozen LLGRBs have been observed in detail to date**. However, the scarcity of LLGRB observations is just an observational bias due to their faintness; their actual cosmic event rate is estimated to be ~ 100 – 1000 Gpc⁻³ yr⁻¹, over 100 times higher than that of typical GRBs [1]. In other words, **LLGRBs are a far more universal phenomenon than typical GRBs**. Therefore, LLGRBs are important astrophysical phenomena since they link typical supernovae and GRBs.

2. Observations of LLGRBs until 2023

Observations of supernovae associated with LLGRBs have not progressed significantly. Over the past 25 years, up to 2023, only five supernovae corresponding to LLGRBs have been observed in detail (GRB 080425 = SN 1998bw, GRB 031203 = SN 2003lw, GRB 060218 = SN 2006aj, GRB 100316D = SN 2010bh, GRB 171205A = SN 2017iuk). It is because the detection limit for Swift/BAT is 10⁻⁹–10⁻⁸ erg s⁻¹ cm⁻², corresponding to a distance of 150 Mpc for LLGRBs; at this limiting distance, the expected number of observed LLGRBs was extremely low (Fig. 1).

Therefore, fundamental questions regarding LLGRBs, such as (1) the progenitors of LLGRSs, (2) how LLGRBs explode and radiate gamma rays, and (3) whether LLGRBs are the source of high-energy neutrinos, remain unresolved. However, the situation is expected to improve dramatically with the launch of the Einstein Probe in January 2024.

3. The Launch of the Einstein Probe (EP)

In January 2024, the Einstein Probe (EP) was launched. EP has a wide-field X-ray telescope (WXT, angular resolution of \sim 3 arcmin) and a tracking X-ray telescope (FXT, angular resolution of \sim 20 arcsec). WXT features a large field of view (3600 deg²) and high sensitivity in the soft X-ray band (0.5 – 4 keV). As of late August 2024, 27 X-ray bursts have been reported by the EP team, with typical fluxes ranging from 10^{-10} to 10^{-9} erg s⁻¹ cm⁻², which confirms EP has a sensitivity \sim 10 times greater than Swift.

The high sensitivity of EP can detect LLGRBs up to 500 Mpc, even if their luminosity is 10⁴⁶ erg s⁻¹ (Fig. 1). Even assuming a conservative event rate of 100 Gpc⁻³ yr⁻¹, the discovery rate of LLGRBs by EP is expected to be ~ 6 yr⁻¹, with half of these observable from the northern hemisphere. In other words, the launch of EP began an era in which multiple LLGRBs associated with supernovae can be observed annually. Furthermore, the radiation from LLGRBs is known to be softer than GRBs [2], which has high similarity with EP's strong sensitivity in soft X-rays.

In fact, EP 240414a = SN 2024gsa and EP 250108a = SN 2025kg have been discovered with counterparting supernovae, and the relationship between GRBs, LLGRBs, and supernovae is being discussed [3, 4].

4. Our Plan for Exploring LLGRBs

We plan to combine Time-of-Opportunity (ToO) observations of imaging with Seimei/TriCCS and spectroscopy with Gemini/GMOS (Fig. 2).

(1) Identifying Optical Counterparts of LLGRBs Using Seimei/TriCCS

Following EP alerts, we conduct follow-up observations using the TriCCS imaging mode (g2/r2/i2). The single FoV of TriCCS can cover the entire positional uncertainty by EP. Note that LLGRBs are expected to be associated with relatively nearby galaxies (d < 500 Mpc). At this distance (μ < 38.5 mag), even the faintest galaxies (–15.5 AB mag) are expected to be brighter than the PS1 limiting magnitude (23 AB mag). While most alerts triggered by EP are likely to be non-LLGRBs, <u>events</u> where PS1 nearby galaxies exist within the EP/FXT error region are considered the most likely candidates for LLGRBs. Therefore, ToO observations should be initiated particularly aggressively for these events.

At present, we have conducted follow-up observations of over ten EP objects. Among these, EP250404a was successfully observed immediately (24 mins after the EP report). This object was a standard GRB, but an afterglow was detected [5]. Furthermore, most recently, we were the first in the world who discover the optical counterpart of EP250828a with an i = 22.3 [6].

(2) Spectroscopy Using Gemini/GMOS

After TriCCS detects the optical counterpart of an LLGRB, a ToO observation is triggered with Gemini/GMOS to obtain the supernova spectrum and determine the redshift of the LLGRB. In particular, for objects down to magnitude 21, it is possible to distinguish subtypes of type Ic supernovae and determine the expansion velocity of the explosion.

References

- [1] Liang et al. (2007), ApJ, 662, 1111, [2] Pian et al. (2006), Nature, 442, 1011,
- [3] van Dalen et al. (2025), ApJL, 982, 47, [4] Srinivasaragavan et al. (2025), ApJL, 988, 60,
- [5] Taguchi, Maeda, Tanaka (2025), GCN Circular #40074,
- [6] Taguchi, Tanaka, Toshikage (2025), GCN Circular #41582,
- [7] Lien et al. (2016), ApJ, 829, 7, [8] Campana et al. (2006), Nature, 442, 1008,
- [9] D'Elia et al. (2018), A&A, 619, 66.

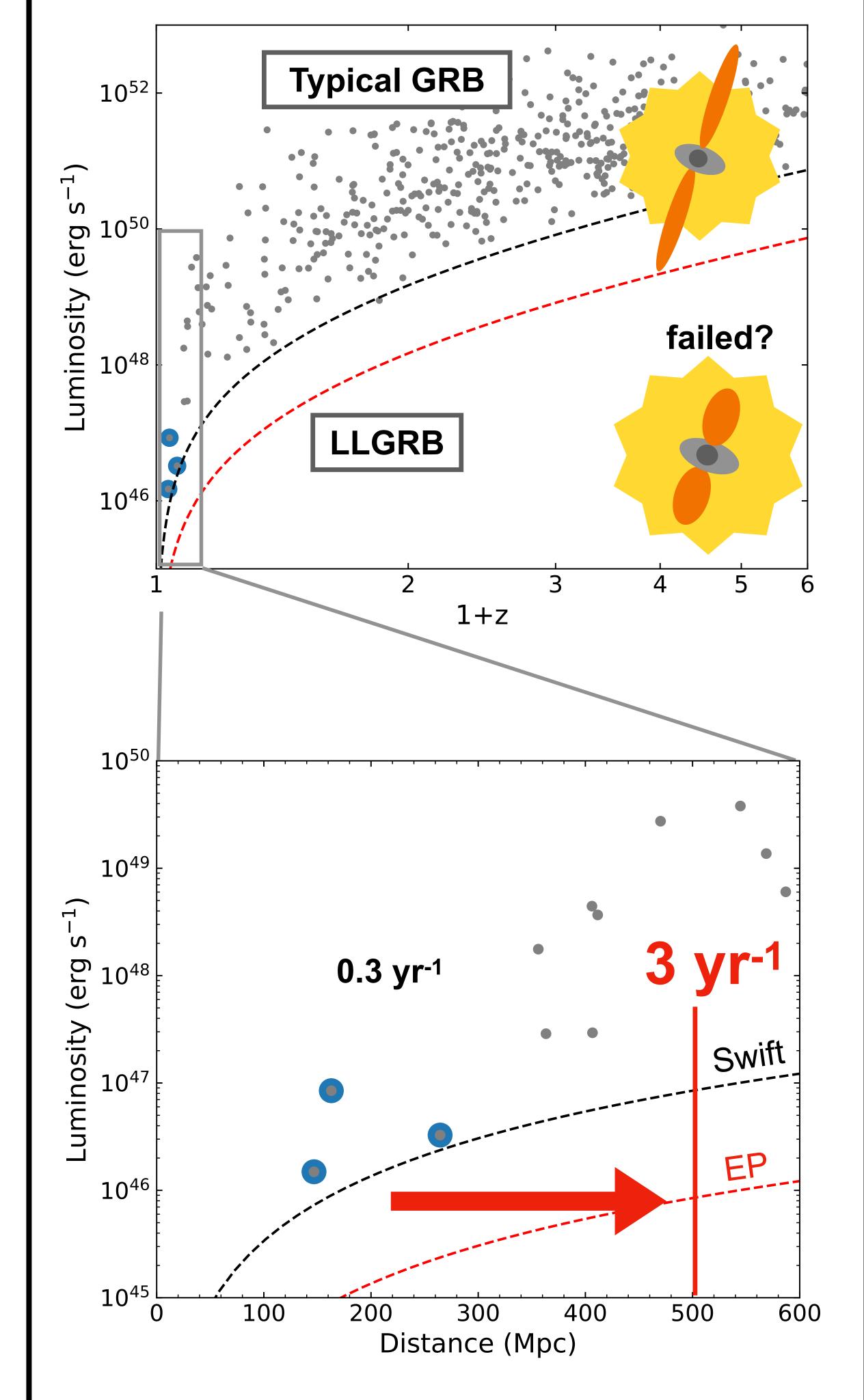


Figure 1: (Top) GRBs detected by Swift with known redshifts [7]. The three particularly faint (< 10^47 erg/s) colored blue are LLGRBs. (Bottom) Zooming up of the top panel. With EP, the number of observable LLGRBs is expected to increase by an order of magnitude compared to Swift.

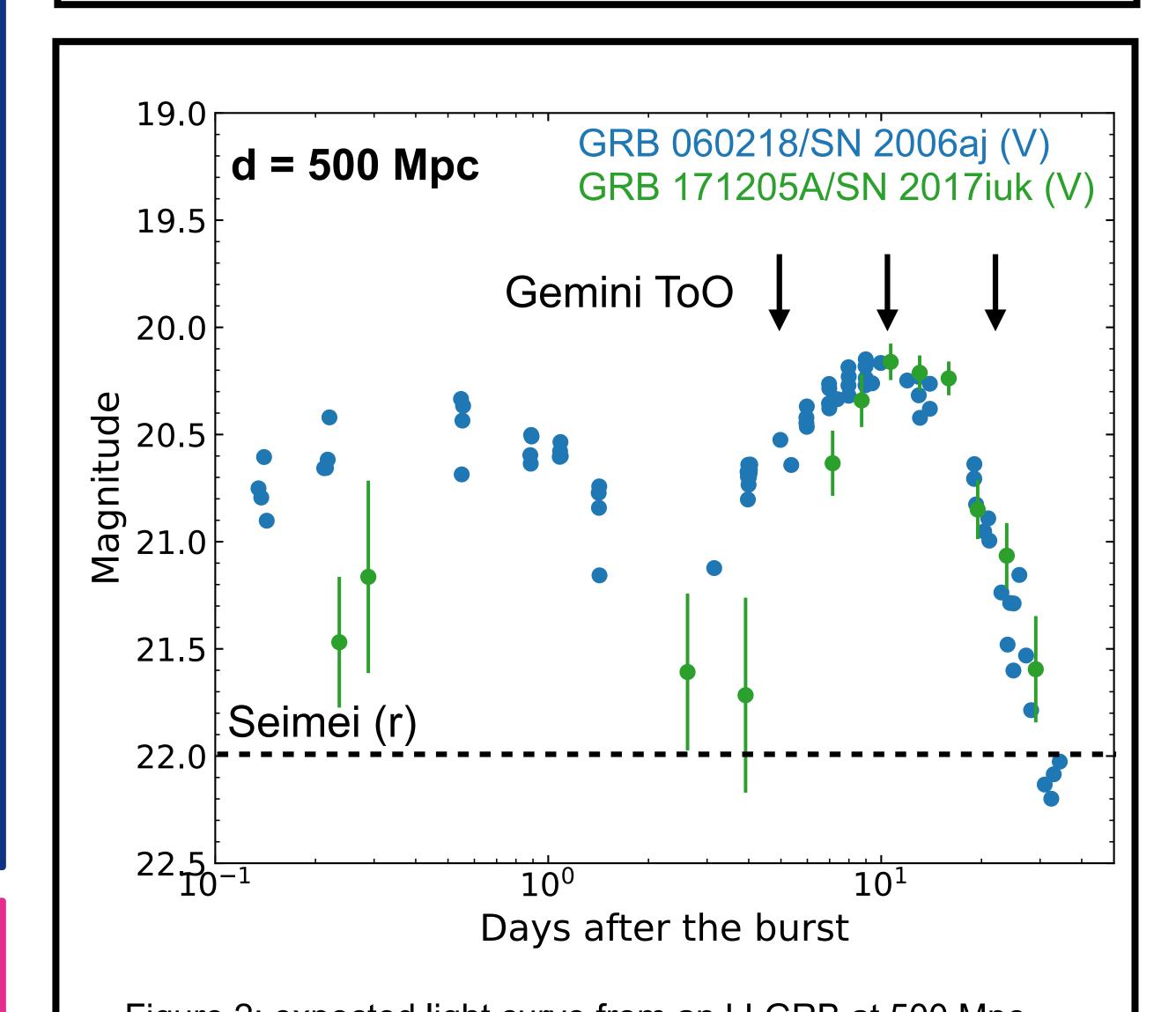


Figure 2: expected light curve from an LLGRB at 500 Mpc (compared with SN 2006aj [8] and SN 2017iuk [9]). We specifically aim to image the GRB afterglow, which ends within one day, and the supernova that appears about two weeks later.