KOOLS-IFUの広波長域分光観測で迫るポストフレアループを伴う白色光フレアの時間発展

市原晋之介1

野上大作1, 行方宏介1, 前原裕之2, 野津湧太3, 幾田佳4,

本田敏志5,大津天斗1, 柴田一成6

1京都大,2国立天文台,3コロラド大,4一橋大,5兵庫県立大,6同志社大.

About this research

Published in PASJ (印刷中)

Article Contents

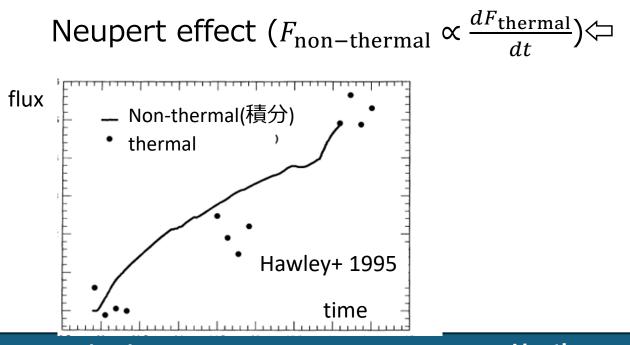
Abstract

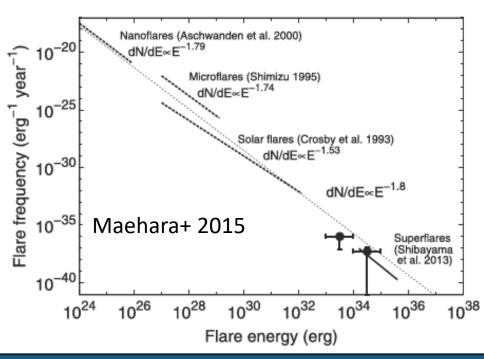
- 1 Introduction
- 2 Observations and data reduction
- 3 Analysis and results
- 4 Discussion
- 5 Summary and future work

Acknowledgments

JOURNAL ARTICLE

Time evolution of a white-light flare accompanied by probable postflare loops on the M-type dwarf EV Lacertae

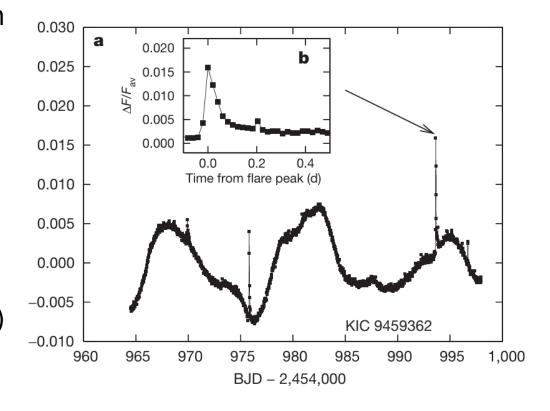

Shinnosuke Ichihara ▼, Daisaku Nogami, Kosuke Namekata, Hiroyuki Maehara, Yuta Notsu, Kai Ikuta, Satoshi Honda, Takato Otsu, Kazunari Shibata


Publications of the Astronomical Society of Japan, psaf080, https://doiorg.kyoto-u.idm.oclc.org/10.1093/pasj/psaf080

Published: 01 August 2025 Article history ▼

What is flares?

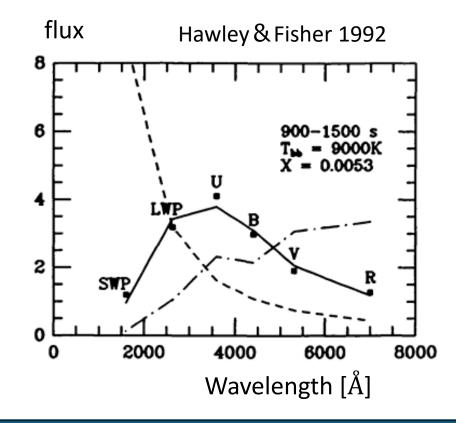
- ◆Sudden explosion events which occur on the surface of the Sun/stars
- ◆Some similar features suggests that solar and stellar flares occur via the same physical processes.
 - e.g. Flare Frequency Distributions(in 野上さん's talk)⇒



2025/09/04 せいめいим

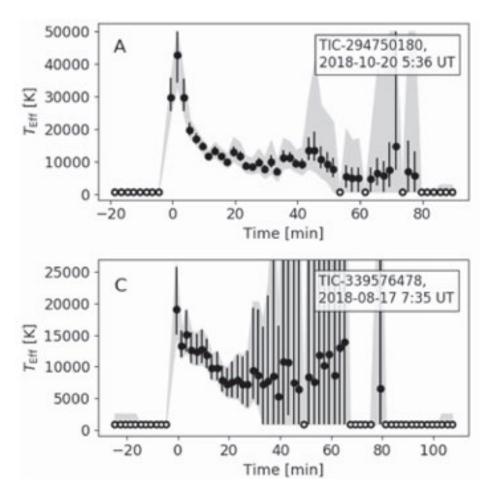
White-light flares

- ◆Accompanied by enhanced NUV/optical continuum radiation
- ◆Rare event on the Sun, but often occur on other stars, especially on <u>young M-type stars.</u>
- ◆Well correlated with hard X-ray emission spatially & temporally (e.g. Watanabe+ 2010)
 - →high-energy electron is thought to be the origin of WLF, but process has not been clarified.



Maehara+ 2012

SED of white-light flares

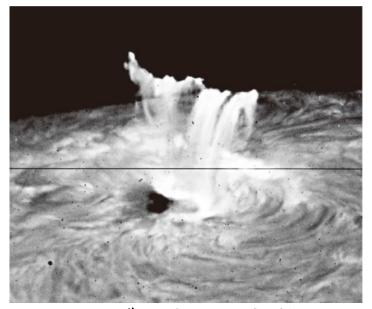

◆White-light continuum (of optical) is well explained with blackbody spectrum at ~10⁴ K (e.g., Hawley & Fisher1992)

→ A lot of studies about stellar flares have estimated the radiative energy under the assumption that white-light continuum is blackbody at ~ 10⁴ K. (Shibayama+ 2013)

SED of white-light flares

- ◆Some previous studies(e.g. Howard+ 2020, Bicz+ 2025)
 indicated that the rapid decrease of radiative temperature (in several minutes)
 with multi-color photometry.
- ◆However, the results of these two papers include large uncertainty because
- 1. Multi-color photometry cannot devide some emission lines (e.g.Ha) and optical continuum,
- 2. TESS has redder wavelength range(6000-10000 Å) >> less sensitive to high temperature

Howard + 2020

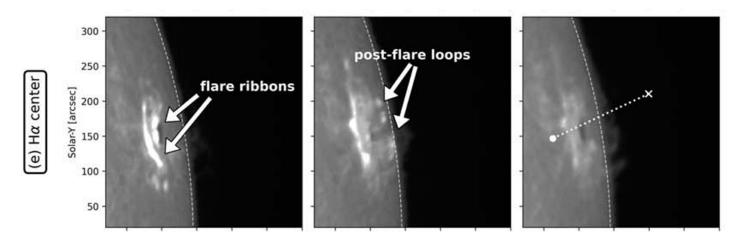

Question

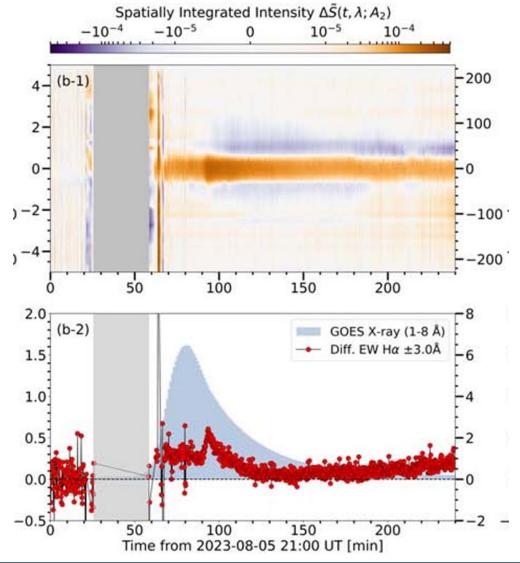
- How accurate is the blackbody assumption?
- How different are the energy calculated with fixed temperature ($\sim 10^4$ K) and changing temperature?

➤ We analyze <u>high-time-cadence</u> & <u>optical spectroscopic</u> data but the numbers of such observations is still small.

Postflare loops

- Postflare loops are one of the components of flares.
- Flare occurs.
 - ⇒Soft X-ray loops ($\sim 10^7$ K) form and cool via radiation.
 - ⇒Postflare loops ($\sim 10^4$ K) can be observed in Ha (But not always).
- Difficult to detect stellar postflare loops (e.g., Kajikiya+ 2025a, ApJ)


シリーズ現代の天文学 太陽


Previous studies about solar postflare loops

Otsu+ 2024 conducted the Sun-as-a-star analysis on X1.6 flare accompanied by postflare loops.

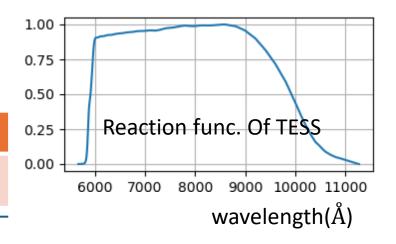
He made the lightcurve and spectra which can be compared with stellar postflare loops

From lightcurve, delayed bump was detected

Observations

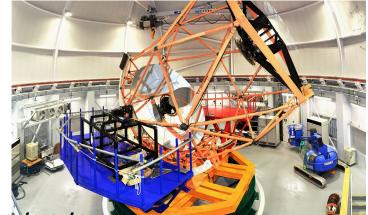
©NASA

Phot TESS


wavelength Time cadence
6000-10000Å 2min

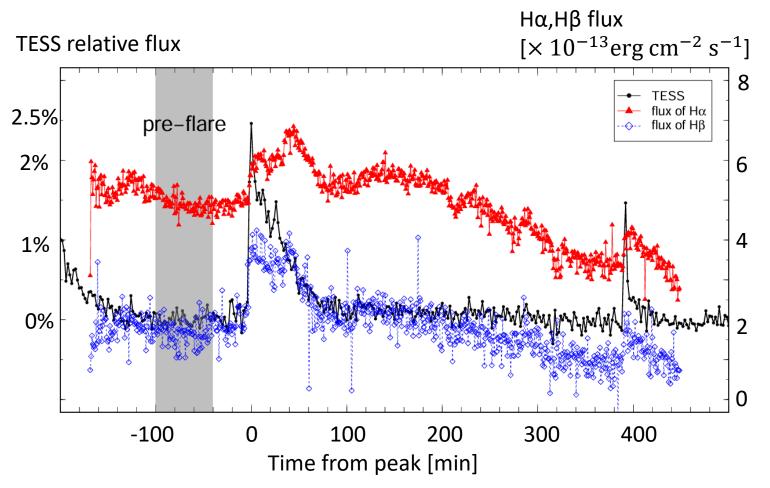
Spec

せいめい望遠鏡 / KOOLS-IFU(VPH-blue)


wavelength	Time cadence	Resolution
4100-8900Å	\sim 52sec (exp 30sec)	$^{\lambda}/_{\Delta\lambda}$ ~500

from: SVO Filter Profile Service

target: M-type dwarf(M4.5 Ve) EV Lac


P_{rot}	4.38 day(Pettersen 1980)
Age	125 — 800 Myr(Paudel+ 2021)
T_{eff}	3270±80K (Paudel + 2021)
Flare rate	~0.4event/h (Schmidt + 2012)

Observation period more than 8 nights during 2019/09/14-2019/10/04 ⇒successfully detected one significant flare

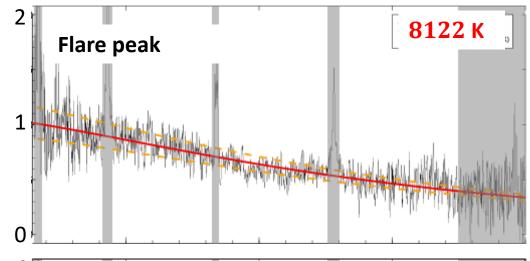
Light curves & spectra

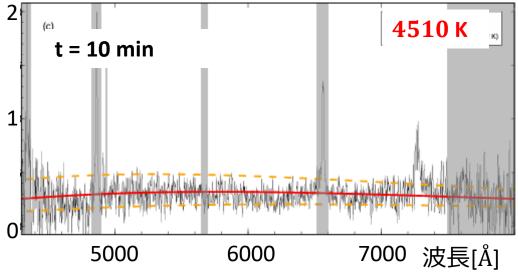
Successfully observed a flare with Seimei & TESS simultaneously

Flux density $[\times 10^{-13} \text{erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}]$ Ηα flare peak pre-flare 1.0 Hβ Ην 0.5 6000 7000 5000 8000 4000 Wavelength [Å]

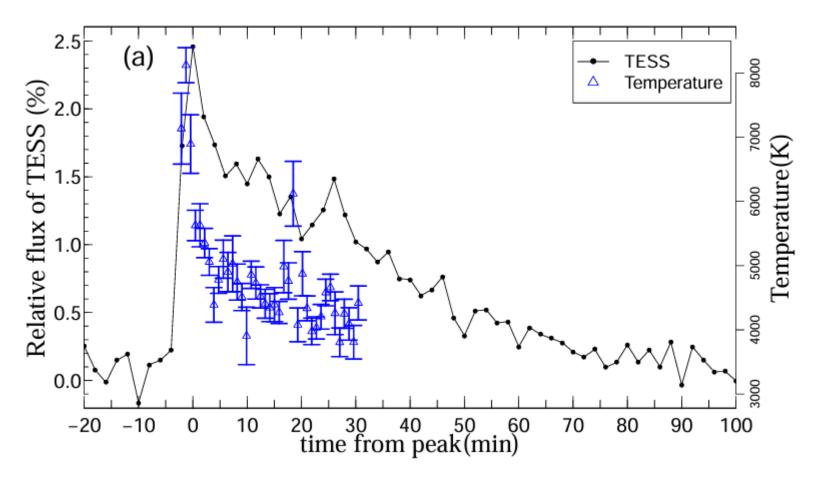
Spectra at flare peak & pre-flare quiescence

Light curves of TESS, $H\alpha$, $H\beta$


Estimation of flare temperature


Make the flare component spectrum by subtracting quiescence from peak spectrum. Then, estimate flare temperature assuming blackbody radiation.

$$B_{\lambda} \propto \frac{A}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda k_B T}\right) - 1} \quad [\text{erg} \cdot \text{cm}^{-2} \cdot \text{sec}^{-1} \cdot \mathring{A}^{-1}]$$


(T and A(scale factor) are free parameter)

- ightharpoonupat flare peak, $T_{\rm flare} = 8122 \pm 273$ K ($\sigma_T = 91$ K) comparable to previous research
- ightharpoonup10min after the flare peak, $T_{\rm flare} = 4510 \pm 212 \; {
 m K}$ Detect the rapid decrease

Time variation of flare temperature

Decay of temperature is more rapid than decay of flux.

E-folding time

 T_{flare} : 2.5 [min]

Flux: 30 [min]

In previous studies, they estimated the flare energy by assuming blackbody @T $^{2}10^{4}$ K(fixed) so that E_{flare} may be overestimated.

Discussion① エネルギー推定

Using the method of Shibayama + 13, we calculated radiative flare energy with considering the decreasing flare temperature.

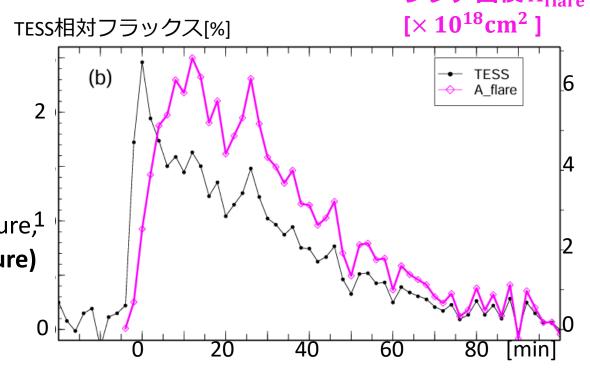
The luminosity is

$$L_{\text{flare}}(t) = \sigma_{\text{SB}} T_{\text{flare}}^{4}(t) A_{\text{flare}}(t)$$

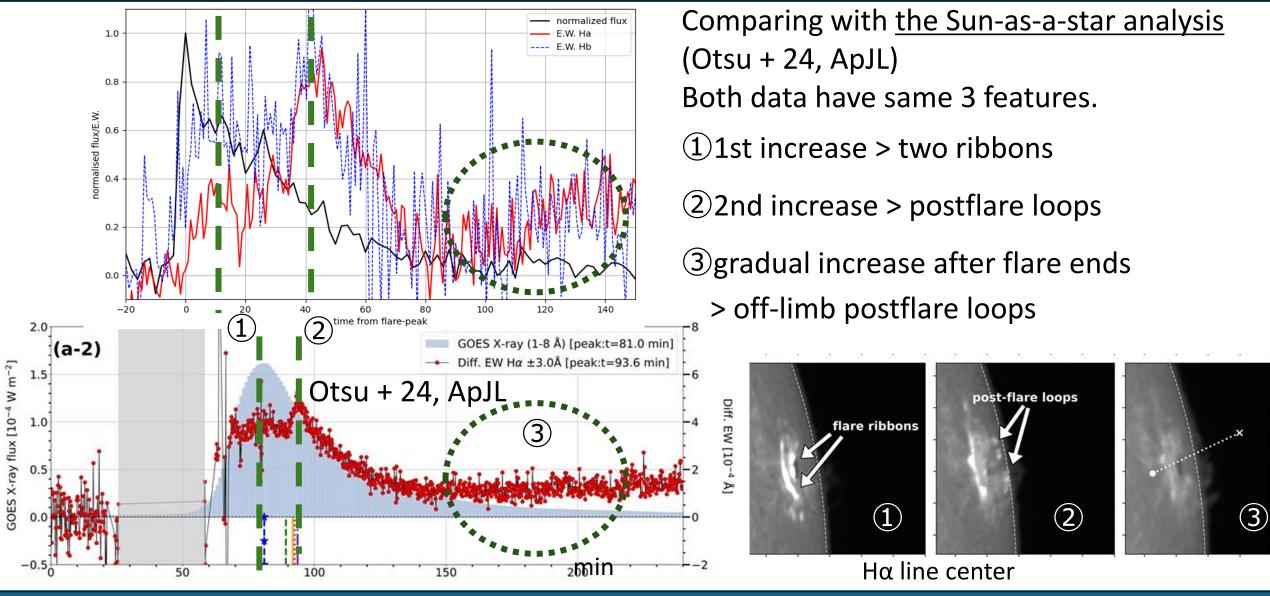
And the area of flare $(A_{flare}(t))$ is $A_{flare}(t) = C'_{flare}(t)\pi R_{star}^2 \frac{\int R_{\lambda}}{\int R_{\lambda} R_{star}}$	D D (T) A
A_{π} $(t) - C'_{\pi}$ $(t)\pi R^2$ $\frac{\int R}{\int R}$	$(\lambda D \lambda (I_{eff}) u \lambda$
$A_{\text{flare}}(t) = C_{\text{flare}}(t) \pi K_{\text{star}} \int R_2 E_1$	$B_1(T_{\text{flore}}(t))d\lambda$

Then, by integrating $L_{flare}(t)$ in time,

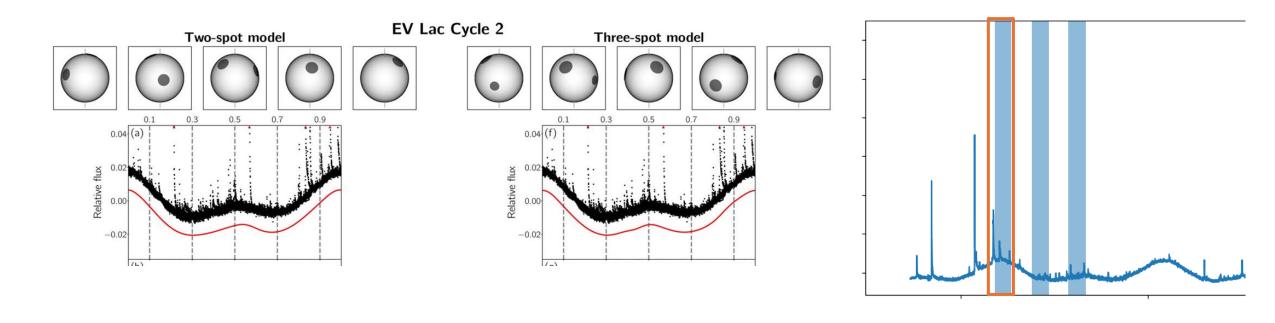
$$ightharpoonup E_{\rm flare} = 4.4 \times 10^{32} \text{ erg}$$


If we does not consider the time-evolution of flare temperature,1

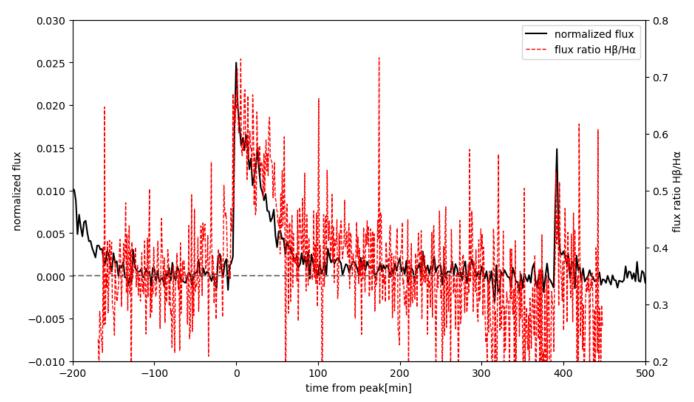
$$E_{flare} = 8.9 \times 10^{32} \text{ erg}(T_{flare} = 8122 \text{ K, peak temperature})$$


$$E_{flare} = 1.2 \times 10^{33} \text{ erg}(T_{flare} = 10000 \text{ K, often used})$$

→overestimated by a factor of 2-3 in TESS band


σ_{SB}	Stefan-Boltzmann 定数
$R_{\rm star}$	恒星半径 (0.38R _O)
R_{λ}	TESSの応答関数
B_{λ}	T [K]のプランク関数
C'_{flare}	白色光の静穏期からの振幅

Discussion 2 Postflare loops on stellar flares


Discussion 2 Postflare loops on stellar flares

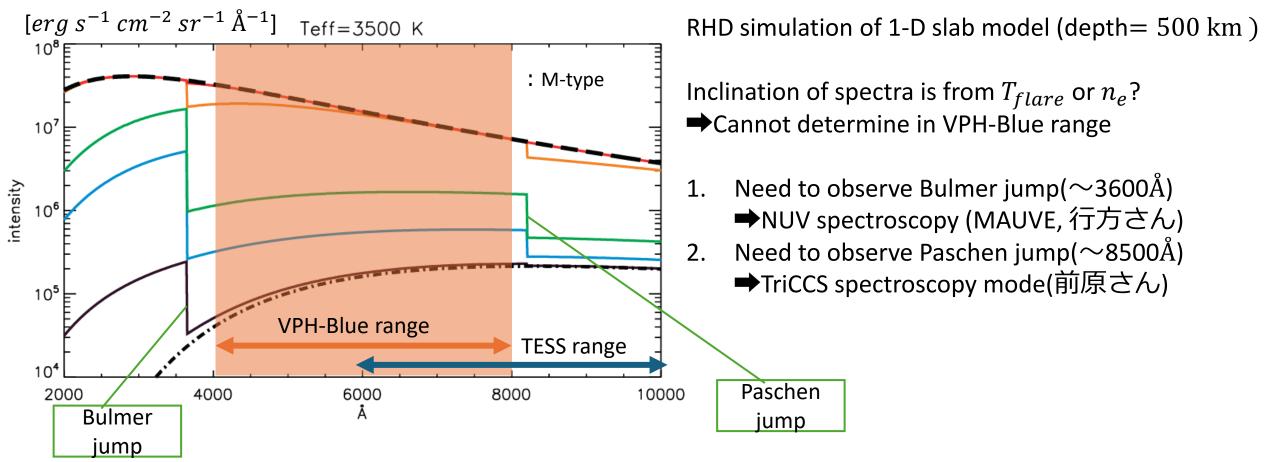
Ikuta+ 2023 conducted 2 or 3 spots mapping with TESS data(same period as this study).

>Around our flare, spot is near the limb. the size is $\sim 6\%$ of stellar disk area (20 times larger than maximum of $A_{flare}(t)$)

Discussion 2 Postflare loops on stellar flares

Another aspect supporting postflare loops is flux ratio of $H\beta/H\alpha$

There is no significant 2^{nd} peak in $H\beta/H\alpha$


- Hβ is optically thin relative to Hα
 >Hβ is more sensitive to flare heating (flare peak)
- No significant 2nd peak
 >different radiative mechanism
 >possibility of postflare loops

Future work

Time variation of $H\beta/H\alpha$ is similar to the lightcurve of optical continuum(TESS), but we don't know why.

Future prospect

Figure 1. in Heinzel 2024.

Dashed line: blackbody @10000 K

Dash-dotted line: blackbody @3500 K (quiescent)

Color lines : spectra of $n_e = 10^{15}$, 5×10^{14} , 10^{14} , 5×10^{13} , 10^{13} [cm⁻³] (from top to bottom)

Summary

purpose

Investigate the detailed time-evolution during white-light flares

by observations with Seimei(spectroscopy) & TESS (photometry) simultaneously

obseravtion

Observed active M-dwarf EV Lac

→ detected 1 significant white-light flare simultaneously

results

- $T_{flare} = 8122 \pm 273 \text{ K}$ (@flare peak)
- $E_{flare} = 4.4 \times 10^{32}$ erg (considering the decreasing temperature)
- Overestimate the energy by a factor of 2-3 with fixed temperature
- Probable postflare loops

Future prospects

- Importance of NUV(行方さん's talk), NIR > > MAUVE ,TriCCS, and so on...
- Observe with MIDSSAR for detection of moving materials
- Flux calibration is essential in this research.
 - \rightarrow More accurate analysis is needed \rightarrow MOFU² is good for this research