2024.09.09-10 せいめい望遠鏡ユーザーズミーティング

近傍セイファート銀河 NGC 4151 の 最高エネルギー分解能X線観測との 同時分光モニター観測

峰崎岳夫(東京大学)

岩室史英、呼子優人(京都大学)、野田博文(東北大学)、 平田悠馬、趙光遠、松下恭子、小林翔悟(東京理科大学)、 鮫島寛明、堀内貴史、水越翔一郎(東京大学)、 小久保充(国立天文台)、山田智史(理化学研究所)

結果の詳細については天文学会秋季年会 各講演を参照してください 平田 (S20a) 、野田 (Z212R) 、趙 (S19a)

活動銀河核(AGNs)

- ・ 広い波長範囲で強い放射
 - SMBH 周囲の様々な構造から様々な波長の放射
 - 降着円盤、ホットコロナ、電離ガス雲、ダスト
 - 非球対称の遮蔽構造
 - 観測者の視線方向によってスペクトルの特徴が異なる

活動銀河核(AGNs)

- ・ 広い波長範囲で強い放射
 - SMBH 周囲の様々な構造から様々な波長の放射
 - 降着円盤、ホットコロナ、電離ガス雲、ダスト
 - 非球対称の遮蔽構造
 - 観測者の視線方向によってスペクトルの特徴が異なる

中性 $FeK \alpha$ 輝線

- X線 FeKα 輝線
 - 周囲にある物質中の鉄が一次 X 線を吸収・再放射(「反射」)
 - 低電離鉄イオンの FeKα輝線のエネルギーは鉄原子の場合と あまり変化しない(→まとめて「中性」FeKα 輝線)
 - 低電離ガス、中性ガス、分子ガス、ダストの有無など、 ガスの状態によらず同様に生じる
 - 遮蔽構造に対して透過力が高い

中性 $FeK\alpha$ 輝線放射領域

- ・ダストトーラス
 - FeKα輝線が強い→大きな被覆率と柱密度が必要
- 先行研究
 - 輝線幅とビリアル関係
 - outer BLR ~ dust torus (TM&KM 15)
 - inner BLR (Miller+18)
 - 時間変動
 - inner BLR (Zogbhi+19)
 - order of 1 pc (Andonie+ 22)

Image-Gredit : NASA/JPL-Caltech

X線・光赤外線多波長モニター観測

- NGC 3516 (Noda, TM+16, 23)
 - すざく衛星と国内地上望遠鏡との同時観測(~1年)
 - <u>中性FeKα輝線の遅延変光→ ~BLR 相当</u>
 - <u>時間変動が小さい中性FeKα成分</u> ___→大きく広がった(>pc)放射領域

XRISM 衛星による NGC4151 観測

- XRISM 衛星X線分光装置 Resolve
 - 最高エネルギー分解能@FeKα輝線: 200-300 km/s (Chandra HETG : ~1900 km/s)
- NGC 4151 観測
 - 2023年12月に2回、2024年5-6月に3回の観測

NGC4151 フォローアップ観測計画

- 概要
 - 5回の XRISM 初期観測との同時に<mark>降着円盤・BLR</mark>・ダスト トーラスからの<mark>可視光</mark>・赤外線放射のモニター観測を遂行し、 中性 FeKα輝線放射領域を同定し、内部構造を調べる
 - 輝線プロファイルとビリアル関係、運動情報
 - 異なる放射変動の時間相関、光度相関
- 観測

せいめい望遠鏡によるフォローアップ観測

- ・ KOOLS-IFU による可視分光モニター観測
 - VPH 495
 - Hβ輝線、[OIII] 輝線
 - $\lambda/\Delta\lambda \sim 1500 \leftarrow XRISM$ Resolve に整合 ($E/\Delta E > 1200@$ FeK α)
 - 積分時間 24分
 - VPH-blue
 - 広い波長域 (H β 、H α ; total flux)
 - $-\lambda/\Delta\lambda \sim 600$
 - 積分時間 12分
- モニター観測
 - 2023.12 ~ 2024.06 (2023B, 2024A) 観測実施19回
 - クラシカルモード:長期モニター観測
 - ToO: XRISM 観測予定日近くの晴天日に観測を実施
 - 1/4 夜単位の観測割当、リモート観測対応 親切なサポートをありがとうございました!

AGN 分光測光についての KOOLS-IFU の特長

- スリット分光の難点
 - 測光分光のためスリットロスを小さくしたい
 - このためシーイングより大幅に広いスリットを使うことが多い
 - センサー上の波長中心位置・分解能が指向誤差・シーイングで 変化し、高精度のプロファイル変動解析には難しい手順が必要
- ・ KOOLS-IFU の特長
 - 広い範囲で面分光データを積分することでスリットロス極小化
 - シーイングによらず安定した波長中心位置・分解能
 - NGC 4151 の extended NLR も積分アパーチャ内に含む
 → [OIII] 輝線を使った精度の高い安定した較正に貢献

KOOLS-IFU は AGN の分光測光モニター観測に**とてもいい** ファイバー本数を増やしてさらに視野が広がると、観測時に望遠鏡指向追尾の 注意深い監視が不要になるのでもっとありがたいです

KOOLS-IFU 観測結果

まとめ

- NGC 4151 の XRISM による観測
 - 世界最高エネルギー分解能による FeKα 輝線の時間変動観測
- NGC 4151 の光赤外線同時モニター観測
 - 様々な放射の時間変動→活動銀河核内部構造~ガスの状態
 - FeKα 輝線の放射領域の同定→ガスの分布・運動
- ・ せいめい KOOLS-IFU 分光モニター観測
 - KOOLS-IFU は AGN 分光測光モニターに最適
 - 2023.12~2024.06 に19回の観測
 - Hβ広輝線のフラックス・プロファイル時間変動
 - FeK α 輝線との比較
 - 今後の解析
 - 反響探査の定量解析(total・速度分解)、時間変動スペクトル
 - 輝線プロファイル・時間変動のモデリング
 - 他の広輝線(Hα、Hell)
 - FeKa輝線との時間相関・光度相関

お知らせ

- NGC 4151 の XRISM による観測一第2弾
 - 観測「window」
 - 2024/10/28 2025/01/12
 - 2025/04/25 2025/07/15

- AO-1 に採択 されました!
- 連続した18日間、1日ごとに9回の観測
- せいめい KOOLS-IFU 分光モニター観測
 - 共同利用観測(ToO)+京大時間(Classical+ToO)採択
 - XRISM 観測時期が決定→ToO 観測計画を策定して連絡
 - 今年(来年)もどうぞよろしくお願いいたします