KOOLS-IFUとTESSの 同時測光分光観測で迫る M型星フレアの可視連続光時間発展

市原晋之介1

野上大作¹, 前原裕之², 行方宏介¹, 野津湧太³,

柴田一成4,本田敏志⁵,幾田佳⁶

1京都大学,2国立天文台,3コロラド大学,4同志社大学,5兵庫県立大学,6東京大学

せいめいユーザーズミーティング 2024

1

2024/9/9

研究背景:フレアとは

- ・太陽/恒星表面の爆発・増光現象.
- 太陽フレアのエネルギーは10²⁹⁻³² erg
 一方,低温M型星では10³³ erg を超える
 「スーパーフレア」が高頻度で発生.
- ・ 恒星フレアに伴う紫外線は周囲の系外惑星の

化学進化に影響を与える

➡観測に基づいた**放射**量の評価

M型星 EV Lacイメージ図 ©NASA

2

研究背景:大問題

大問題 スーパーフレアの観測は現在盛んだが,

- エネルギーが波長に対してどう分配されるか
- 大規模フレア中のダイナミクスや放射メカニズム が未解明

わかっていること

恒星の紫外線から可視光にかけてのフレアの連続光放射は フレアエネルギーの大部分を占める

> 恒星フレアの可視光域と紫外域の観測が重要

本研究では可視連続光に注目

可視連続光フレアの先行研究

観測手法:<u>可視光域で測光・分光同時観測</u>

- 3.8m岡山せいめい望遠鏡
- ・KOOLS-IFUのVPH-blueを使用

2024

観測波長域	時間分解能	波長分解能
4300-8000Å	~52sec (露出30sec)	$^{\lambda}/_{\Delta\lambda}$ ~500

観測対象

■M型矮星(M4.5 Ve) EV Lac

可視連続光・近紫外線(Kowalski+ 2013.)・
 X線(Inoue+ 2024.)・近赤外(Schmidt+ 2012.)
 などでフレアが検出されている

フレア発生頻度	~0.4event/h (Schmidt + 2012.)
有効温度(静穏時)	3270±80K (Paudel + 2021.)
年齢	3×10 ⁸ 年
自転周期	4.38日(Pettersen 1980.)

■観測時間(日本時間) 2019年9月14日 21時-29時

aladinより

せいめいユーザーズミーティング 2024

光度曲線とスペクトル

せいめいとTESSで フレアを同時に検出

フラックス[× 10⁻¹³erg cm⁻² sec⁻¹ Å⁻¹](せいめい)

せいめいユーザーズミーティング 2024

解析:画像処理

KOOLS-IFUデータ解析マニュアル

(<u>http://www.kusastro.kyoto-u.ac.jp/~kazuya/p-kools/reduction-201806/index.html</u>) を基にirafを用いてflux calibrationまで行った

全ファイバーを足し合わせた Sky fiberは黄色マーカーの一列 (星像位置の大きな時間変化なし)

2024/9/9

手法・解析①:黒体輻射を仮定した温度推定

解析①:黒体輻射でフィッティング

フレアピーク後10分程度で短波長側のフラックスが大きく減少し, フレア温度はおよそ半分にまで減衰している

2024/9/9

せいめいユーザーズミーティング 2024

解析①:フレア温度の時間変化

図:フレア温度とTESS測光カウントの時間変化

TESSの減衰と比べて, 温度の減衰が大きい. E-folding time 黒体温度: 2.5 [min] TESS光度曲線: 30 [min] シ次ページからの エネルギー推定に 影響を与える

手法・結果②:エネルギー推定(TESS測光)

求めた有効温度を用いてエネルギー計算 (Shibayama+13) 温度変化を考慮してエネルギーを算出すると,

$$\Rightarrow E_{flare} = 4.4 \times 10^{32} \text{ erg}$$

一方,フレア温度をピーク時(8122K)で固定すると, ➡*E_{flare}* = 8.9 × 10³² erg

図:静穏時からの測光増分とフレア面積の時間変化

せいめいユーザーズミーティング 2024

フレア面積の変化

2024/9/9

せいめいユーザーズミーティング 2024

まとめ

背景 フレアの**放射メカニズム**や **放射エネルギーがどのように分配される**かわからない

▶時間分解された広波長域分光データが必要(報告例が少ない)

対象 M型矮星EV LacをTESS(測光)・せいめい望遠鏡(分光)で観測

- **結果** ① フレア成分の有効温度が8122 ± 273 K (誤差は±3σ_T)
 - 温度の時間変化を考慮した
 推定放射エネルギーは4.4×10³² erg
- 展望 黒体輻射以外の放射機構は? 理論モデル(e.g. Heinzel 2024.)と比較し、光学的厚さなども考慮した詳細な フレアの物理過程を解明したい 紫外域のバルマージャンプを含めた観測を計画

展望:理論モデルとの比較(e.g. Heinzel 2024)

Color lines : 上から $n_e = 10^{15}$, 5 × 10¹⁴, 10¹⁴, 5 × 10¹³, 10¹³ [cm⁻³]

2024/9/9

出展:https://bssl.space/mauve/

Collaborative 3-Year Survey

October 2025 Launch

Flare Evolution

Long-duration and repeat observations of stars are crucial to understanding flare frequency and evolution through time.

Mauve's short-cadence observations will unlock the amplitude duration and integration area of the flare, enabling the measurement of the flare peak time, $t_{1/2}$ flare duration proxy, and equivalent duration, shown to be correlated with the stellar parameters. Exploring flares on dwarfs and giants, Mauve will expand our knowledge of flare evolution on a large variety of stars via a homogeneous database.

2024/9/9

	in a second s
13 cm	10 nm (max R=65)
Primary Mirror	Spectral Resolution
-46.4 to 31.8 deg	25 Kg
Field of Bogord	Satellite Weight

今後の展望(本研究について)

・フレア温度が下がった時($T_{flare} \sim T_{eff}$)は,黒体放射を行う光 学的に厚いプラズマが光球を隠す影響も考慮する.

検出したフレアのスペクトル例(せいめい分光)

フラックス[10^{-13} erg cm⁻² sec⁻¹ Å⁻¹]

静穏時からのカウント値増分(TESS)

2024/9/9

差分スペクトル(せいめい分光)

2024/9/9

せいめいユーザーズミーティング 2024

解析①:フレア成分温度の時間変化

手法②:エネルギー推定(TESS測光)

解析②:エネルギー推定(TESS測光)

黒体放射を仮定するとボロメトリックな光度は $C'_{flare}(t)$ A_{flare}(t)を用いてステファンボルツマンの法則より 0.025 カウント値増分 $L_{flare}(t) = \sigma_{SB} T_{flare}^4(t) A_{flare}(t)$ 0.020 フレアの時間積分した放射エネルギーは、 0.015 $E_{flare} = \int_{t_{start}}^{t_{end}} L_{flare}(t) dt$ 0.010 フレアの継続時間は,右図のオレンジ部分 0.005 0.000 $\Rightarrow E_{flare} = 4.4 \times 10^{32} \text{ erg}$ 0.050 0.000 .025 0.075 0.1000.125 0.175 0.150 BID +2.458741e6 t_{start} tend

せいめいユーザーズミーティング 2024

2024/9/9

短波長の具体的な話

- Kowalski + 2013では,黒体放射+バルマージャンプ(3646Å)の2 成分を考えた解析をしている
- λ> 4000では黒体でフィッティング している

せいめいユーザーズミーティング 2024

波長毎の2次元画像(ターゲット星)

2024/9/9

せいめいユーザーズミーティング 2024

波長毎の2次元画像(標準星)

恒星のelevation毎にairmassが変わり,波長毎の屈折率が異なる >>入るファイバーにずれはないか >>標準星は,右上がりに少し変化あり

2024/9/9

	0.40um at am=1.0	0.45um at am=1.0	0.50um at am=1.0	0.55um at am=1.0	0.60um at am=1.0	0.65um at am=1.0	0.70um at am=1.0
ŧ	0.40um at am=1.2	0.45um at am=1.2	0.50um at am=1.2	0.55um at am=1.2	0.60um at am=1.2	0.65um at am=1.2	0.70um at am=1.2
	0.40um at am=1.4	0.45um at am=1.4	0.50um at am=1.4	0.55um at am=1.4	0.60um at am=1.4	0.65um at am=1.4	0.70um at am=1.4
	0.40um at am=1.6	0.45um at am=1.6	0.50um at am=1.6	0.55um at am=1.6	0.60um at am=1.6	0.65um at am=1.6	0.70um at am=1.6
	0.40um at am=1.8	0.45um at am=1.8	0.50um at am=1.8	0.55um at am=1.8	0.60um at am=1.8	0.65um at am=1.8	0.70um at am=1.8
						and the second se	
	0.40 <mark>um at</mark> am=2.0	0.45um at am=2.0	0.50um at am=2.0	0.55um at am=2.0	0.60um at am=2.0	0.65um at am=2.0	0.70um at am=2.0
	0.40 <mark>um at</mark> am=2.7	0.45 <mark>um at</mark> am=2.7	0.50um at am=2.7	0.55um at am=2.7	0.60um at am=2.7	0.65um at am=2.7	0.70um at am=2.7

大気分散: 空気の屈折率による天体の実際の高度と見かけの高度の差が生む、波長毎の位

2024/9/9

FWHM=2-Qivert 5500A = air mass = 12024 irmass changeによる星像ボケも考

高度とair mass

せいめいユーザーズミーティング 2024

他のフレームでは見られない >>ノイズか

2024/9/9

せいめいユーザーズミーティング 2024

アパーチャ半径を変更したときの フラックスの変化

KOOLS-IFUのthroughput

Optical throughput including telescope and atmosphere

2024/9/9

TESSとせいめいのフレアピークのずれ

差は1.27[min]

考えられる原因

- 1. TESS:2[min], せいめい:50[sec]
- 温度が下がると、黒体ピーク は長波長側に移動する.
 - >TESS波長域でFLUX増?
- 3. フレア面積変化の影響
 - フレア初期は
 - 温度高,面積小
 - 減衰時は

温度低,面積大

2024/9/9

せいめいのピーク時刻判定

黒体フィットの確からしさ

ピーク時刻において,相関係数を計算した pcov(共分散行列)= $\begin{pmatrix} \sigma_T^2 & \sigma_{TA} \\ \sigma_{AT} & \sigma_A^2 \end{pmatrix}$ $r = \frac{\sigma_{TA}}{\sigma_T \sigma_A} = -0.99$ 強い負の相関がある.

- 非常
 相関係数行列

 [[8.33667063e+03 -2.68096871e-20]
 -2.68096871e-20]

 [-2.68096871e-20 8.75506529e-44]]
 (σ_T^2, σ_A^2) = (8336 K^2 , 8.755 × 10⁻⁴⁴)
-]: print(np.sqrt(pcov[0,0]), np.sqrt(pcov[1,1]))

91.30537021604415 2.958895958200803e-22

 $(\sigma_T,\sigma_A)=(91K,\ 2.958 imes 10^{-22})$

黒体フィッティングの確からしさ>相関係数の確認

#相関係数
r = pcov[1,0]/np.sqrt(pcov[0,0]*pcov[1,1])
print("相関係数:"+str(r))
相関係数:-0.9923519545329752

2024/9/9

フィッティングに使用した温度の曲線化

TESSの増分が1%以下の 時間帯をフィッティング に使用

E-folding time : 2.5min

フィッティングの除いた部分

2024/9/9

(owalski et al. 2013参照.

波長域[Å]	
$\lambda < 4300$	
$4310 < \lambda < 4370$	Ηγ
$4828 < \lambda < 4898$	Нβ
$5650 < \lambda < 5700$	
$6520 < \lambda < 6610$	Ηα
$7500 < \lambda$	