東京大学木曽シュミット望遠鏡 赤外線全天雲モニタの運用

酒向 重行, 瀧田 怜, 紅山 仁, 高橋 英則, 近藤 荘平, 森 由貴 (東京大学), 大澤 亮, 冨永 望 (国立天文台), 田中 雅臣 (東北大学), 諸隈 智貴 (千葉工業大学), 池田 思朗(統計数理研究所), João Pedro Pedroso(ポルト大学)

せいめいUM2023

2023/09/12-13

東京大学 津々木 里咲

@京都大学理学部セミナーハウス

全天の雲分布のリアルタイム把握

- ・現状:観測領域が現在曇っているかどうかは
 - **外に見に行く** … 非効率, リモート観測の場合不可能
 - **可視光全天カメラで確認 …** 月光や街明かりなどの散乱により把握が困難 [Wm⁻²sr⁻¹µm⁻¹]
- ・**雲を見るには中間赤外線(Nバンド)が最適** - 大気透過率がよい, 散乱光よりも雲自身の熱放射が優勢
- ・レンズ材の制限から中間赤外線用の全天魚眼レンズは製作が困難
- ・先行研究:**大型で高コスト**

天頂の遮蔽が大きい(凸面鏡)

時間安定性の不足(酸化バナジウム型マイクロボロメータ)

小型、低コスト、遮蔽なし、時間安定の赤外線全天雲モニタを開発

・市販の屋外用小型ボロメータカメラを採用

<仕様>非冷却マイクロボロメータ (シリコン型, 8-12 µm に感度)

シャッターレス

直径3.4mmのGeレンズ

視野42°×42°, 出力80×80 pix

・遮蔽を極力減らした光学系を開発

新たに拡大光学鏡を考案 (特許出願済, 酒向・津々木, 2022) シンプルな鏡形状を採用 (円断面回転対称形) 直径10cm

・外側が天頂方向、中心が水平方向の空を見る画像を取得 →画像処理で非反転の全天画像を作成し、雲分布を把握

光学設計

・カメラに対する出射角 θ と見込む空の天頂角 Θ の関係式を導出

$$\Theta = \theta + 4 \operatorname{atan} \left(\frac{R - \sqrt{R^2 - 2Ra \tan(\theta) + 2Rb \tan^2(\theta) - a^2 + 2ab} \tan(\theta)}{2R \tan(\theta) + a - b \tan(\theta)} \right)$$

- 鏡径100mm, センサ上で全天がドーナツ型に結像

・各画素中心からのビームを追跡し性能を評価

- 空間分解能は高度方向 10-15°, 方位角方向 1-20°

- Tomo-e Gozenのサーベイ(視直径9°, 高度限界30°)に十分な性能

<u>※ミラーの直径を大きくすることでより高分解能にすることが可能</u>

カメラモジュールの制御と較正

- ・カメラモジュールを制御するソフトウエアを作成
- UDP通信, FITSファイル作成(Linux, Python)
- ・線形性とオフセットのセンサ温度依存性を測定しモデル化
- 様々な温度の対象物 (水,冷凍機) を撮影
- 環境温度を変えて (室内,屋外,冷蔵庫内,冷凍庫内) 同様に実験 - 晴れた空を直接みたときのカウントをオフセットとして使用

Count = $aF_I + b$ $a(T_S) = 0.007 T_S^2 - 3.7 T_S + 500$ $b(T_S) = -0.57 T_S^2 - 300 T_S - 31000$ F_I : 入射放射強度 T_S : センサ温度

・モデルを用いて線形性とオフセットを較正

 $Count' = \frac{10000}{F_I(300K)} \cdot F_I = \frac{10000}{F_I(300K)} \cdot \frac{Count - b(T_S)}{a(T_S)}$

装置の製作

- ・ミラー:SUS高精度切削加工,保護膜なし
 - (Al + フッ素コート,SUS + SiO2保護膜と耐久性を比較) 画像の中心合わせのため**中心と外側を平面**に 支柱の影に水抜き穴
- ・**筐体**:遮蔽を最小限に抑えるようフレームを設計 トレランス解析の結果 ~1mm,~0.5°の精度を要求
- ・フラット画像は直径1mの半球型の発泡スチロールで覆って予め取得
- ・結露防止のためヒーターをミラー裏面に貼付
- ・木曽観測所本館の屋上に、**支柱が北**になるよう設置

画像処理

- ・生画像は反転した全天画像になるため非反転に戻す
- ・各画素中心が見込むビームパタンをあらかじめ計算しておき 観測される画素カウントに比例して重み付けしマッピング
- ・座標変換後、フラット処理と支柱による遮蔽領域の画素補間を行う

オフセット処理

・出力値はミラー表面からの放射によるオフセット成分を含む

- 気温に応じてオフセットが変動

- ・ミラー中心の平面にスタイキャストを塗って黒体とする
 - 反射防止のため表面を荒削り
 - (オフセット) = (スタイキャスト部分からの放射) × (放射率)
 - 放射率は晴れ間のカウント値がOになるよう経験的に調整 → 放射率 ~0.4 …一般的なSUSの放射率に矛盾しない
- ・オフセットを画像全体から引き算したものを 最終的な全天画像とする

- ・1分に1枚全天画像を取得(~1GB/日)
- ・可視光画像に比べて昼夜問わず 雲の分布を把握することができた
- ・昼間に可視光画像と比較して (Local time) 経験的に晴れ/曇りの閾値を設定
- Tomo-e Gozenサーベイの観測点(RA,Decで定義) ごとに直径10°領域内の平均放射量を求め 晴れ曇り判定マップを作成

晴れ曇り判定マップと同時刻に取得した可視光全天画像

可視光全天画像との比較

赤外線全天画像と

TOMO-E GOZEN自動サーベイ観測への組み込み

- ・Tomo-e Gozen自動広域サーベイシステム (2022年度- 改良)
 - … 観測しながら最適化アルゴリズムに 従って観測点を5個ずつ指定
- ・次の5個を決める際に晴れ曇り判定マップを 参照しに行き、**晴れ判定の中から**選択
- ・雲情報を参照してから観測が実行されるまで 5-10分かかる

→その間に雲が動いてしまって避けきれない ことも

サーベイ中の望遠鏡の動き(~80倍速)

赤:観測した場所灰色:曇り判定

システムモニター

Executing Queue Item (pid: 29958 / on-going) <

	Kiso Observatory All-Sky Survey 2023-08-30T12:51:24.914237 469d517e-5764-59d3-8851-389e9ee551d7
I	reset exposure parameters
I	set focus to 28.13 mm
I	assert items: domeslit_open
	point telescope to (ra, dec) = (22:56:28.24, +37:08:18.21) mirror cover OPEN
	waiting for telescope_tracking,domepos_tracking,mirrorcover_open set pipeline wcs,stack,neo
I	set parameters: t=0.5s; N=18; gain=high
I	obtain "J2256+3708_dith1"
I	shift telescope by (0.0, 1440.0)
	waiting for telescope_tracking,domepos_tracking 天1JTV obtain "J2256+3708_dith2"
I	shift telescope by (-1980.0, 0.0)
I	waiting for telescope_tracking,domepos_tracking
I	obtain "J2256+3708_dith3"
I	shift telescope by (0.0, -1440.0)
	waiting for telescope_tracking,domepos_tracking
	obtain "J2256+3708_dith4"
1	

i	rst 10 Recipes in the Queue (total: 5)	夏番待ちの
	Kiso Observatory All-Sky Survey 2023-08-30T12:51:24.930678 041284c9-5296-5215-a323-8a4505f958da comment: All-Sky Survey, 94, 2023-08-30T22:01:01.000	(RA1,Ďé
	Kiso Observatory All-Sky Survey 2023-08-30T13:03:47.503145 bcafe9a8-df79-5a32-ac06-d16a0156b77e comment: All-Sky Survey, 95, 2023-06-30T22:03:36.000	(RA2,Ďé
	Kiso Observatory I All-Sky Survey 2023-08-30T13:03:47.520428 Lae99261d-062b-5ca6-b1bb-42bdd58137f9 comment: All-Sky Survey, 96, 2023-08-30722:05:00.000	(RA3,De
	Kiso Observatory I All-Sky Survey 2023-08-30T13:03:47.535969 I 65d1d7b6-a6b0-5b5/-ab67-662c4415f0b9 comment: All-Sky Survey, 97, 2023-08-30T22:06.24.000	(RA4,Ďé
	Kiso Observatory I All-Sky Survey 2023-08-30113:03:47.553914 Lae33ff7d-60ef-5249-961b-35b1dd1accc3 commont: All-Sky Survey, 98, 2023-09-30122:07:48.000	(RA5,De

深層学習を用いた雲分布予測

- ・深層学習モデル(Convolutional GRU)を用いて 過去10分の全天画像から未来10分の全天画像を予測
- ・深層学習を用いなかった場合に比べて5-10分後の 雲の検出率が**2.6%**向上(2023/9/1-7)

- 深層学習なし=現在の雲分布が今後10分間続くと想定 — 5-10分後のmax画像, Elvation ≥30°で判定マップを比較

(P=曇り,N=晴れ)		深層学習なし	深層学習あり
Accuracy = (TP+TN)/ALL		0.928	0.934
[Recall = TP/(TP+FN)	0.792	0.818
Precision = TP/(TP+FP)		0.896	0.908

予測結果のmax画像から晴れ曇り判定マップを作成し、 "5-10分後の間に雲が通りそうな所を避けたサーベイ"を実装

11

木曽観測所での利用

Tomo-e GozenのHP上から

現在の情報を閲覧可能

追加情報

 Cloud distribution:動きのある雲の分布 (最新の画像) - (最新1時間の最小値画像)
 Cloud coverage:現在と予測の差分
 = 今曇っているがこれから晴れそう

= 今晴れているがこれから曇りそう

Infrared Allsky Camera at Kiso (10 µm band)

Converted image

animation (last 40 images)

Cloud coverage

animation (last 40 images)

Optical image

animation (last 10 images)

Raw image

animation (last 40 images)

Cloud distribution

Latest - Minimum of last 60 frame (60 min)

Time-series data

single sensor : Az = 180 deg, Elv = 60 deg all-sky camera : Az = 307 deg, Elv = 55 deg

Predictive images (for the next 10 min)

Animation

Averaged image 2023-09-07 18:15:00 -- 18:24:00 (57)

Cloud coverage

2023-09-07 19:15:00 -- 18:24:00 ((ST)

本装置の汎用性

複製が容易な上、計算機さえあれば

ネットワークケーブル1本(+ヒーター用電源)で設置可能

- ・耐環境性に優れメンテナンスの必要性が低い
- ・観測者の気象状況の判断材料
- ・絶対値を時系列的に監視
- ・自動観測に雲情報を組み込む

Infrared Allsky Camera at Kiso (10 µm band)

animation (last 40 images)

Raw image

animation (last 40 images)

Cloud coverage

animation (last 40 images)

Cloud distribution

Latest - Minimum of last 60 frame (60 min) single sensor : Az = 180 deg, Elv = 60 deg

Optical image

animation (last 10 images)

Time-series data

all-sky camera : Az = 307 deg, Elv = 55 deg

Predictive images (for the next 10 min)

まとめ

- ・低コスト,小型,時間安定,遮蔽なしの全天赤外線雲モニタを開発
- ・遮蔽を極力減らした円断面回転対象形ミラーの光学系(特許審査中)
- ・全天がドーナツ型に結像するミラーの製作(分解能10-15°)
- ・カメラモジュールを制御し**温度依存性を較正**するソフトウェアを開発
- ・各画素のビームパターンをもとに**座標変換**のアルゴリズムを開発
- ・スタイキャストを塗布したミラー中心部を使ってミラーからの放射成分を測定しオフセット処理
- ・経験的に設定した閾値をもとに**晴れ曇り判定マップ**を作成し、**Tomo-e Gozenサーベイシステムに組み込み**
- ・深層学習を用いて未来10分の雲分布を予測したところ 深層学習を用いない場合に比べて雲の検出率が2.6%高くなった
- ・本雲モニタシステムは汎用性が高く、比較的容易に各天文台へ導入が可能

