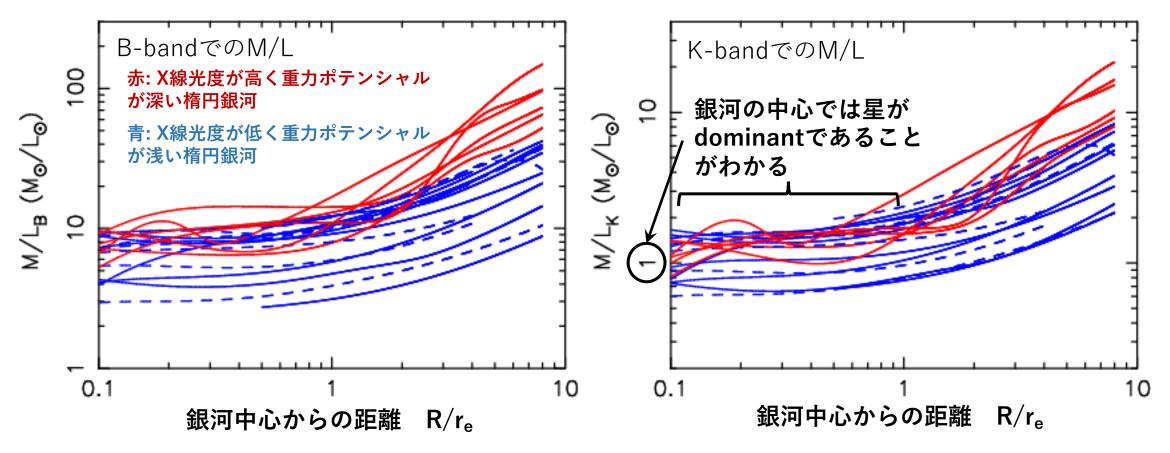

NIC撮像観測によるNGC 2300 銀河群の質量-光度比とダークマ ター質量の再見積もり

兵庫県立大学 戸塚 都

質量-光度比


Faber, S. M. & Gallagher, J. S., 1979, ARA&A 17, 135

B-band での比較 銀河の形態をまたいだ比較では有効

楕円銀河における質量-光度比

星とガス、ちりなどの循環、暗黒物質の見積もりや定量的に議論すするには、 それぞれの天体に適切な波長帯を選ぶほうが良い

Nagino, R. & Matushita, K, 2009, A&A 17, 135

楕円銀河における質量-光度比

銀河群

- 銀河より深い重力ポテンシャル構造
- 銀河から放出されたガスを大量に蓄えている
- cD銀河と銀河団の中間の性質をもち、

今回のターゲット: NGC 2300 銀河群

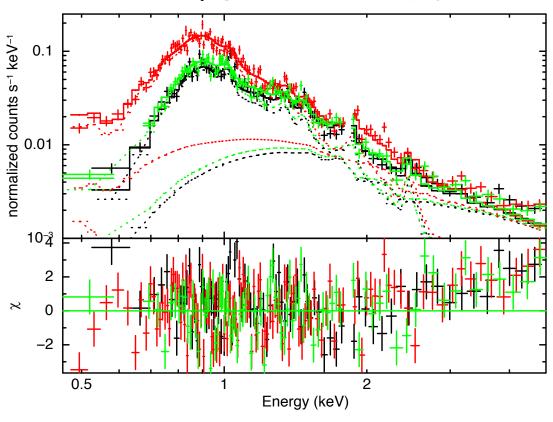
- 構成銀河のうち特に明るい銀河は2コ
- 銀河群を満たす高温ガスはほぼ NGC2300によって供給されている
- 銀河群の中でも低温であるがFe以外のα元素も豊
- 銀河群によるガスの閉じ込めが起こっている

NGC2300 group

青丸は中心3arcmin領域

NGC 2300銀河群の観測

銀河群の全質量 M


重力によって閉じ込められたガスの ガス密度nHと温度kTから求める

熱平衡・静水圧平衡
$$M_{tot(r)} = -\frac{kT(r)r}{\mu m_p G} \left(\frac{d \log n_{gas}}{d \log r} + \frac{d \log T}{g \log r} \right)$$

kT (keV) 0.79 ^{+0.009} -0.009	O (solar) 0.36 +0.07 -0.07	Ne (solar) 0.49 ^{+0.07} -0.07	Mg (solar) 0.32 +0.05 -0.05
Si	S	Fe (solar)	nH
(solar) 0.29 ^{+0.05}	(solar) 0.85 +0.12 -0.12	(solar) 0.29 ^{+0.02} -0.02	$(10^{-20} \text{ cm}^{-2})$ $7.43 \begin{array}{c} +0.09 \\ -0.09 \end{array}$

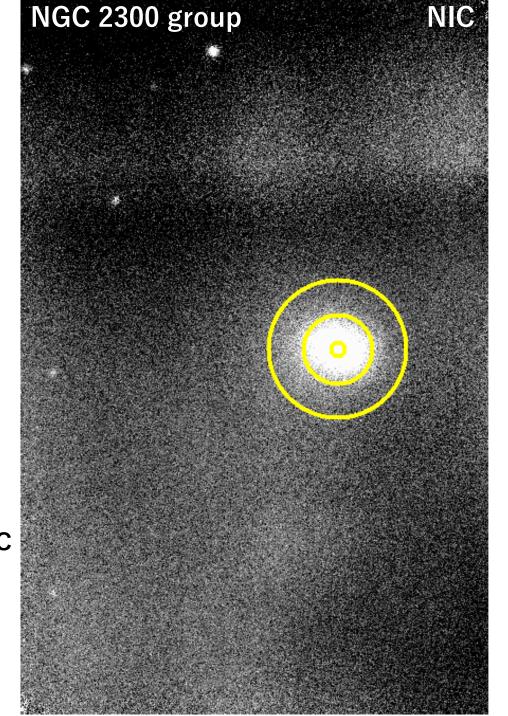
NGC 2300 の中心3arcmin

NGC 2300 の中心3arcminのスペクトル

NGC 2300銀河群の観測

K-band 光度

なゆた望遠鏡NICによる撮像観測



天文台のseeing ~1.5 arcsec

NIC 基本性能 pixel scale 0.16 arcsec/pix

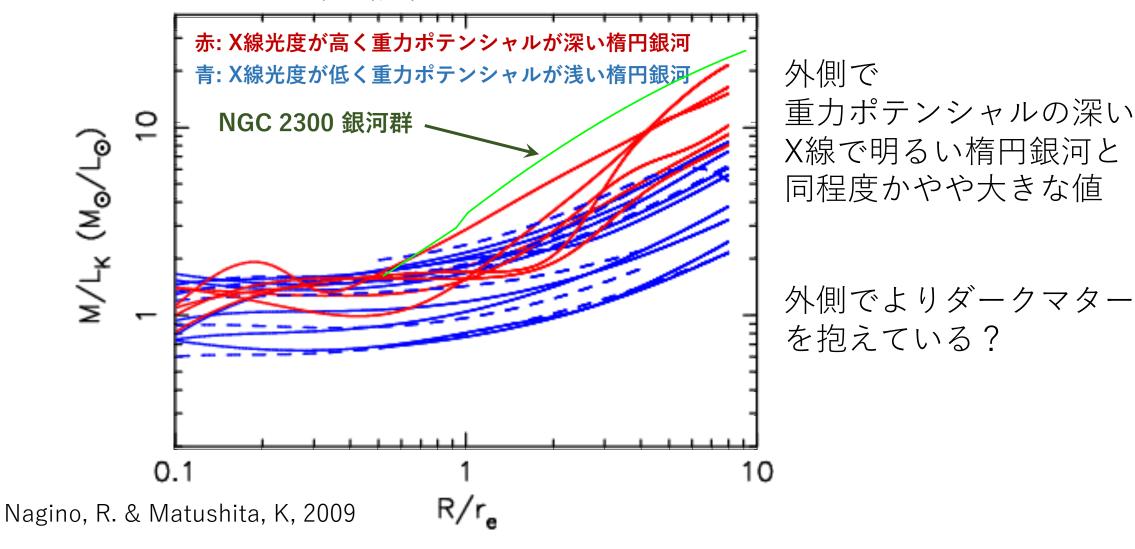
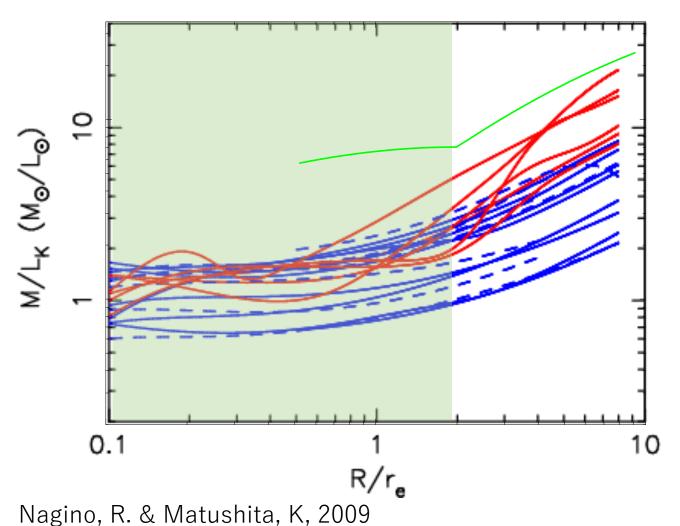

数秒刻みでの光度分布が得られる

図:NGC 2300のNIC K-band撮像画像 黄色の丸は中心から $0.1 r_e = 2.27 arcsec$ $0.5 r_e$ 、 $1r_e$



銀河群の質量-光度比

NGC 2300銀河群の結果

光度の半径分布も考慮した質量-光度比

NICの空間分解の良さを利用

<1Reでの光度分布を求め 半径に対する質量光度比を求める

中心領域で質量光度比が高くなるガスの超過??

銀河群中心により多くガスを抱えている?

Future work

Suzakuによる観測から

Fe以外にもSi、Oなどの α 元素の組成比が高い

銀河を構成している星からの重元素の供給 SNe IaのみならずMass Iossからの寄与も強い

kT (keV)	O (solar)	Ne (solar)	Mg (solar)
$0.79^{+0.009}$	0.36 ^{+0.07}	0.49 +0.07	0.32 +0.05
Si (solar)	S (solar)	Fe (solar)	nH (10 ⁻²⁰ cm ⁻²)
$0.29^{+0.05}$	0.85 +0.12	0.29 +0.02	$7.43^{+0.09}_{-0.09}$

銀河から放出されたガスを閉じ込めている可能性

銀河の光度分布から星の質量分布求める

星 → ガス(銀河群) への重元素供給量

銀河群 → 系外 への重元素の逃げ出し量

銀河から銀河間空間へのガス、重元素の供給、循環を定量的にものめる